Daffodil International University Faculty of Science & Information Technology Department of Computer Science and Engineering Final Examination, Spring-2024 Course Code: MAT 102, Course Title: Mathematics II Level: 01 Term: 02 Batch: 65 Time: 2 Hours Marks: 40 ## Answer All Questions [The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.] | 1. | . a) | [2 -3 6] | [3+5] | | |----|------|--|-------|-----| | | | (i) Organize P as a sum of symmetric and skew-symmetric matrix. (ii) Construct P⁻¹. | | CO2 | | | b) | Identify the Rank, the RREF and the NF of $M = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 2 & 4 & 1 & -2 & 3 \\ 3 & 6 & 2 & -6 & 5 \end{bmatrix}$. | [6] | | | 2. | | The network in the figure shows the traffic flow (in vehicles per hour) over several one-way streets in the downtown area of a certain city during a typical lunch time. Analyze the flow and find the general solution of the system of equations that describes flow. 200 700 400 A x ₁ B x ₅ | [6] | CO3 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | 3. | | Given $M = \begin{bmatrix} -1 & 18 & 0 \\ 1 & 2 & 0 \\ 5 & -3 & -1 \end{bmatrix}$.
(i) List out the eigenvalues of M^{-2} .
(ii) Inspect the trace of M^{-4} and the spectrum of M^{5} . | [4+4] | CO3 | | 4. | a) | Determine whether the vectors $(2,1,3,-1)$, $(2,3,1,2)$, $(3,2,5,6)$ and $(-2,-7,3,-8)$ are linearly independent or dependent. Find a LDR among them and verify it. | [3+2] | | | | b) | P(x,y,z) = (4x - 3z, 2x + y, -z), Q(x,y,z) = (y,x + 3z,z - x),
R(x,y,z) = (3xy,x - y,x - 5y + z), S(x,y,z) = (x + y - z, 3y + z).
(i) Examine which are LT.
(ii) Evaluate QoP and PoS . | [4+3] | CO4 |