

Daffodil International University

Department of Software Engineering Faculty of Science & Information Technology Midterm Examination, Spring 2024

Course Code: SE234; Course Title: Theory of Computing

Sections & Teachers: All (FBR)

Time: 1 Hour 30 Mins

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

a)	Let the alphabet Σ be the standard 26 letters {a,b,c,d,z}. If $A = \{good, bad\}$ and $B = \{boy, girl\}$, then find out $A \cup B$	[Marks- 2]	CLO-1 Level-4
b)	Design state diagram of Deterministic finite Automata 101 Isomuse L of binary symbol.	[Marks- 3+2]	
1	II. Design DFA where L = {w w is 111 for binary input}.		
c)	Demonstrate the following DFA and show epsilon acceptance.	[Mark3- 2+1]	*
a)	Contrast the cases where using a DFA is more advantageous	[Marks- 3]	CLO-2
b)	Apply subset construction method to convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)- NFA 0,1 q0 q1 q3	[Marks- 4]	Level-4
	b) c)	A= {good, bad} and B = {boy, girl}, then find out {union} and A.B (concatenation) 1. Design state diagram of Deterministic finite Automata for language L of binary symbol. L= {w w is the empty string ε or ends in a 0} II. Design DFA where L = {w w is 111 for binary input}. c) Demonstrate the following DFA and show epsilon acceptance. a a,b a,b a,b a,b Apply subset construction method to convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)- NFA	A= {good, bad} and B = {boy, girl}, then his decided (union) and A B (concatenation) b) 1. Design state diagram of Deterministic finite Automata for language L of binary symbol. L= {w w is the empty string \(\text{c} \) or ends in a 0} II. Design DFA where L = {w w is 111 for binary input}. c) Demonstrate the following DFA and show epsilon acceptance. a a,b a,b a,b Apply subset construction method to convert the following Non-Deterministic Finite Automata (NFA) to Deterministic NFA 0,1 0,1 0 q1 0

	c)	Design a Non deterministic finite automata for input {a,b} where L = {w w where any numbers of a's followed by any number of b's}	[Marks- 3]	à;	8:9
3.	a)	List 4 applications of Regular expression.	[Marks- 2]	CLO-3	
	b)	Construct Regular Expression for the following Language: L= {w w starts with b and length os even {b,c}}	[Marks- 3]	Level-3	