

Daffodil International University

Faculty of Science & Information Technology
Department of Computer Science and Engineering
Midterm Examination, Fall-2024

Course Code: MAT 102, Course Title: Mathematics II

Level: 01 Term: 02 Batch: 66

Time: 1.5 Hours

Marks: 25

Answer All Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

		256	ำเธร	
1	3)	Illustrate β - Γ function to calculate the exact value of $\int_0^1 \sqrt{x} (1-x^2)^3 dx$.	[3]	
	by	Demonstrate the value of $\int_0^{\pi/2} \cos^3 \theta \sin^{\frac{5}{2}} \theta d\theta$.	[3]	CO1
	Z)	Show that $\int_0^\infty \sqrt{x} \ e^{-2x} \ dx = \frac{\sqrt{\pi}}{4\sqrt{2}}.$	[2]	
2.	a)	In a gaming simulation, the score S is modeled by the function $S(x,y) =$	[3]	
		$\ln(x^2 + y^2) + e^x \cos(y)$, where x represents the number of enemies defeated		
		and y represents the number of levels completed. Identify the value of S_x , S_y and		
		S_{yx} .		CO2
	b)	Apply Euler's theorem for the function $u = \sin^{-1}\left(\frac{x+2y+3z}{\sqrt{x^8+y^8+z^8}}\right)$ to show that	[4]	
		$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = -3\tan u.$		
3.		Evaluate $\iiint_V (x+z) dy dx dz$, where V is the region of space bounded by $x=0$	[5]	004
		$x = z^{2}, y = x, y = z \text{ and } z = 2, z = 0.$		CO4
4.	1	Two fluids in the complex plane are represented by the vectors $z_1 = 3 + 7i$ and	[1+4]	
		$z_2 = -4 + 5i.$		
		(i) Identify the resultant fluid.		CO2
		(ii) Construct the resultant fluid flow vector in both polar form and		
		exponential form.		