

Daffodil International University

Faculty of Science & Information Technology
Department of Computer Science & Engineering
Mid Semester Examination, Fall 2024

Course Code: CSE228, Course Title: Theory of Computation

Level: L2 Term: T2 Batch: 64

Time: 01.5 Hrs

Marks:25

Answer <u>ALL</u> Questions [All portions of each question must be answered sequentially.]

Q1	a)	Summarize the difference between \emptyset and \in . Given the Alphabet $\Sigma = \{y, z, 0\}$,	[2]	
	-,	so compute $\sum_{i=1}^{2} 2^{i}$,
	b)	Evaluate the string 00110 using extended transition function for the following transition table.	[2]	
		$\begin{array}{c cccc} & 0 & 1 \\ \hline & q0 & \{q0\} & \{q0,q1\} \\ & q1 & \{q2\} & \varnothing \\ & *q2 & \varnothing & \varnothing \end{array}$		CO1
	c)	Summarize the meaning of "a*b+b*a".	[1]	
Q2	a)	Apply the knowledge of NFA to Design NFA's accepting the following languages over the alphabet {a,b}	[3]	
		i) The set of all Strings containing aba anywhere in the string ii) The set of all Strings ending with bba iii) ending with bbb		
	b)	Apply the knowledge of DFA to Design DFA's accepting the following languages over	[3]	CO2
		 i) The set of strings containing 010 at the end in the string ii) Design DFA to accept the following language, L={W/W has odd number of 1's and even number of 0's} 		
	c)	Considering the transition table from the Q1 b. If the mentioned Automata is NFA, then convert to DFA.	[4]	
Q3	a)	Construct the Regular Expression for the language consisting of all the strings of 0' and 1's that have the following condition: i) Containing 110 anywhere in the string ii) Containing 1 either two or three	[3]	
	b)	possible position from the beginning. iii) Containing 101 at the end of the string Convert the following Regular expression (RE) into NFA with ϵ transition.	[3]	
		i) 1(1+0)*0 ii) (a b)*(abb a*b)		CO ₂
	c)	Convert the following NFA into equivalent RE	[4]	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		