Daffodil International University

Faculty of Science & Information Technology Department of Computer Science & Engineering Mid Semester Examination, Fall 2024

Course Code: CSE228, Course Title: Theory of Computation Level: L2 Term: T2 Batch: 64

Time: 01.5 Hrs

Marks:25

Answer ALL Questions

[All portions of each question must be answered sequentially.]

Q	1 a)		[2]	C01
	Jb)	so compute $\sum 2$ Evaluate the string 00110 using extended transition function for the following transition table. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[2]	
	c)	Summarize the meaning of "a*b+b*a".	[1]	
Q2	(a)	Apply the knowledge of NFA to Design NFA's accepting the following languages over the alphabet {a,b} i) The set of all Strings containing aba anywhere in the string ii) The set of all Strings ending with bba iii) ending with bbb	[3]	CO2
	-b)	Apply the knowledge of DFA to Design DFA's accepting the following languages over the alphabet {0,1} i) The set of strings containing 010 at the end in the string Design DFA to accept the following language, L={W/W has odd number of 1's and even number of 0's}	[3]	
-	c)	Considering the transition table from the Q1 b.	[4]	
Q3	a)	If the mentioned Automata is NFA, then convert to DFA. Construct the Regular Expression for the language consisting of all the strings of 0' and 1's that have the following condition: i) Containing 110 anywhere in the string ii) Containing 1 either two or three possible position from the beginning. iii) Containing 101 at the end of the string	[3]	
	b)	Convert the following Regular expression (RE) into NFA with € transition. i) 1(1+0)*0 ii) (a b)*(abb a*b)	[3]	CO2
	c)	Convert the following NFA into equivalent RE	[4]	
		$ \begin{array}{c} $		