

Daffodil International University

Department of Computer Science and Engineering Faculty of Science & Information Technology Midtern Examination, Spring 2024

Course Code: MAT211, Course Title: Engineering Mathematics Level: L2 Term: T1 Batch: 64

Time: 01:30 Hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	a)	Show an ODE for $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$.	[5] -	
	ь)	Show the solution of the homogeneous ODE $\frac{dy}{dx} = \frac{-x^2 + xy + y^2}{xy}$.	[5]	COI
2.	a)	Solve the ODE $\frac{dy}{dx} = \frac{6x - 4y + 1}{3x - 2y + 3}$ by using reducible to variable separable method.	[6]	CO2
	b)	Solve the ODE $D^4y - 7D^2y - 18Dy = e^x$.	[6]	
3.	a)	Identify y_p for $(D^2 - 4)y = x^3$	[3]	CO2

Daffodil International University

Department of Computer Science and Engineering Faculty of Science & Information Technology Midtern Examination, Fall 2023

Course Code: MAT211, Course Title: Engineering Mathematics

Level: L2 Term: T1 Batch: 63

Time: 01:30 Hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1	(a)	Find a differential equation by eliminating arbitrary constants from $y = ae^{3x} + be^{-2x}$.	[3]	
	(b)	Find the solution of the ODE $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$.	[5]	CO1
2.	a)	Solve the ODE $\frac{dy}{dx} - xy = xy^2$ by using appropriate method.	[4]	
	(b)	Solve the ODE $D^3 y - 8D^2 y + 19Dy - 12y = \sin x$.	[5]	CO2
3.	A)	Determine y_p for $(D^2 - 1)y = e^x \sin x$	[2]	
	(b)	Evaluate the solution of $x^3 \frac{d^3 y}{dx^3} + 5x^2 \frac{d^2 y}{dx^2} + 7x \frac{dy}{dx} + 8y = x^2$	[6]	CO2

Daffodil International University

Department of Computer Science and Engineering Faculty of Science & Information Technology Midtern Examination, Fall 2022

Course Code: MAT211, Course Title: Engineering Mathematics Level: L2 Term: T1, Section: A,B,C,D,E,F,G,Old-A Batch: 60

Time: 01:30 Hrs Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	a)	Define Order and Degree of Differential Equations (D. Es.)	3	CO1
	b)	Develop the D.E. corresponding to the equation $y = ax + bx^2$		
2.	a)	Describe how can you verify the Homogeneous D.E.?	1	CO2
	b)	Solve the Homogeneous D.E. $(x^2 + y^2)dx + 2xy dy = 0$	4	
3.	a)	Solve the D.E. using appropriate method $(3x-2y+1)dy = (6x-4y+3)dx$	2	CO3
	b)	Solve the D.E. $(D^3 + D^2 + D + 1)y = \cos x$	3	
4.	a)	Define Integrating Factor (I.F.)	1	CO2
	b)	Calculate the solution of the D.E. using suitable method $x\frac{dy}{dx} + 2y = x^2 \log x$	4	
5.		Solve the Bernoulli's D.E. $2\frac{dy}{dx} - \frac{y}{x} = \frac{y^2}{x^2}$	5	соз